
Python Sets
myset = {"apple", "banana", "cherry"}

Set
Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of data, the
other 3 are List, Tuple, and Dictionary, all with different qualities and usage.

A set is a collection which is unordered, unchangeable*, and unindexed.

* Note: Set items are unchangeable, but you can remove items and add new
items.

Sets are written with curly brackets.

Example

Create a Set:

thisset = {"apple", "banana", "cherry"}

print(thisset)

Note: Sets are unordered, so you cannot be sure in which order the items will
appear.

Set Items
Set items are unordered, unchangeable, and do not allow duplicate values.

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp

Unordered
Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot
be referred to by index or key.

Unchangeable
Set items are unchangeable, meaning that we cannot change the items after
the set has been created.

Once a set is created, you cannot change its items, but you can remove items
and add new items.

Duplicates Not Allowed
Sets cannot have two items with the same value.

Example

Duplicate values will be ignored:

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

Get the Length of a Set
To determine how many items a set has, use the len() function.

Example

Get the number of items in a set:

thisset = {"apple", "banana", "cherry"}

print(len(thisset))

Set Items - Data Types
Set items can be of any data type:

Example

String, int and boolean data types:

set1 = {"apple", "banana", "cherry"}

set2 = {1, 5, 7, 9, 3}

set3 = {True, False, False}

A set can contain different data types:

Example

A set with strings, integers and boolean values:

set1 = {"abc", 34, True, 40, "male"}

type()
From Python's perspective, sets are defined as objects with the data type 'set':

<class 'set'>

Example

What is the data type of a set?

myset = {"apple", "banana", "cherry"}

print(type(myset))

The set() Constructor
It is also possible to use the set() constructor to make a set.

Example

Using the set() constructor to make a set:

thisset = set(("apple", "banana", "cherry")) # note the double
round-brackets

print(thisset)

Python Collections (Arrays)
There are four collection data types in the Python programming language:

● List is a collection which is ordered and changeable. Allows duplicate
members.

● Tuple is a collection which is ordered and unchangeable. Allows duplicate
members.

● Set is a collection which is unordered, unchangeable*, and unindexed. No
duplicate members.

● Dictionary is a collection which is ordered** and changeable. No duplicate
members.

*Set items are unchangeable, but you can remove items and add new items.

**As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier,
dictionaries are unordered.

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp

When choosing a collection type, it is useful to understand the properties of that
type. Choosing the right type for a particular data set could mean retention of
meaning, and, it could mean an increase in efficiency or security.

Python - Access Set Items

Access Items
You cannot access items in a set by referring to an index or a key.

But you can loop through the set items using a for loop, or ask if a specified
value is present in a set, by using the in keyword.

Example

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

print(x)

Example

Check if "banana" is present in the set:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

Change Items
Once a set is created, you cannot change its items, but you can add new items.

Python - Add Set Items

Add Items
Once a set is created, you cannot change its items, but you can add new items.

To add one item to a set use the add() method.

Example

Add an item to a set, using the add() method:

thisset = {"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset)

Add Sets
To add items from another set into the current set, use the update() method.

Example

Add elements from tropical into thisset:

thisset = {"apple", "banana", "cherry"}

tropical = {"pineapple", "mango", "papaya"}

thisset.update(tropical)

print(thisset)

Add Any Iterable
The object in the update() method does not have to be a set, it can be any
iterable object (tuples, lists, dictionaries etc.).

Example

Add elements of a list to at set:

thisset = {"apple", "banana", "cherry"}

mylist = ["kiwi", "orange"]

thisset.update(mylist)

print(thisset)

Python - Remove Set Items

Remove Item
To remove an item in a set, use the remove(), or the discard() method.

Example

Remove "banana" by using the remove() method:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)

Note: If the item to remove does not exist, remove() will raise an error.

Example

Remove "banana" by using the discard() method:

thisset = {"apple", "banana", "cherry"}

thisset.discard("banana")

print(thisset)

Note: If the item to remove does not exist, discard() will NOT raise an error.

You can also use the pop() method to remove an item, but this method will
remove the last item. Remember that sets are unordered, so you will not know
what item that gets removed.

The return value of the pop() method is the removed item.

Example

Remove the last item by using the pop() method:

thisset = {"apple", "banana", "cherry"}

x = thisset.pop()

print(x)

print(thisset)

Note: Sets are unordered, so when using the pop() method, you do not know
which item that gets removed.

Example

The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset)

Example

The del keyword will delete the set completely:

thisset = {"apple", "banana", "cherry"}

del thisset

print(thisset)

Python - Loop Sets

Loop Items
You can loop through the set items by using a for loop:

Example

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

print(x)

Python - Join Sets

Join Two Sets
There are several ways to join two or more sets in Python.

You can use the union() method that returns a new set containing all items
from both sets, or the update() method that inserts all the items from one set
into another:

Example

The union() method returns a new set with all items from both sets:

set1 = {"a", "b" , "c"}

set2 = {1, 2, 3}

set3 = set1.union(set2)

print(set3)

Example

The update() method inserts the items in set2 into set1:

set1 = {"a", "b" , "c"}

set2 = {1, 2, 3}

set1.update(set2)

print(set1)

Note: Both union() and update() will exclude any duplicate items

Keep ONLY the Duplicates
The intersection_update() method will keep only the items that are present
in both sets.

Example

Keep the items that exist in both set x, and set y:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

x.intersection_update(y)

print(x)

The intersection() method will return a new set, that only contains the items
that are present in both sets.

Example

Return a set that contains the items that exist in both set x, and set y:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.intersection(y)

print(z)

Keep All, But NOT the Duplicates
The symmetric_difference_update() method will keep only the elements
that are NOT present in both sets.

Example

Keep the items that are not present in both sets:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

x.symmetric_difference_update(y)

print(x)

The symmetric_difference() method will return a new set, that contains only
the elements that are NOT present in both sets.

Example

Return a set that contains all items from both sets, except items that are
present in both:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.symmetric_difference(y)

print(z)

Python - Set Methods
❮ PreviousNext ❯

Set Methods
Python has a set of built-in methods that you can use on sets.

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

https://www.w3schools.com/python/python_sets_join.asp
https://www.w3schools.com/python/python_sets_exercises.asp
https://www.w3schools.com/python/ref_set_add.asp
https://www.w3schools.com/python/ref_set_clear.asp
https://www.w3schools.com/python/ref_set_copy.asp

difference() Returns a set containing the difference between two
or more sets

difference_update() Removes the items in this set that are also included
in another, specified set

discard() Remove the specified item

intersection() Returns a set, that is the intersection of two other
sets

intersection_update() Removes the items in this set that are not present in
other, specified set(s)

isdisjoint() Returns whether two sets have a intersection or not

issubset() Returns whether another set contains this set or not

issuperset() Returns whether this set contains another set or not

pop() Removes an element from the set

remove() Removes the specified element

https://www.w3schools.com/python/ref_set_difference.asp
https://www.w3schools.com/python/ref_set_difference_update.asp
https://www.w3schools.com/python/ref_set_discard.asp
https://www.w3schools.com/python/ref_set_intersection.asp
https://www.w3schools.com/python/ref_set_intersection_update.asp
https://www.w3schools.com/python/ref_set_isdisjoint.asp
https://www.w3schools.com/python/ref_set_issubset.asp
https://www.w3schools.com/python/ref_set_issuperset.asp
https://www.w3schools.com/python/ref_set_pop.asp
https://www.w3schools.com/python/ref_set_remove.asp

symmetric_difference
()

Returns a set with the symmetric differences of two
sets

symmetric_difference
_update()

inserts the symmetric differences from this set and
another

union() Return a set containing the union of sets

update() Update the set with the union of this set and others

https://www.w3schools.com/python/ref_set_symmetric_difference.asp
https://www.w3schools.com/python/ref_set_symmetric_difference.asp
https://www.w3schools.com/python/ref_set_symmetric_difference_update.asp
https://www.w3schools.com/python/ref_set_symmetric_difference_update.asp
https://www.w3schools.com/python/ref_set_union.asp
https://www.w3schools.com/python/ref_set_update.asp

